360 research outputs found

    The Sudbury Structure (Ontario, Canada) and Vredefort Structure (South Africa): A comparison

    Get PDF
    Both the Sudbury Structure (SS) and the Witwatersrand Basin surrounding the Vredefort Structure (VS) host some of the most important base and precious metal deposits on earth. In both structures Precambrian igneous, sedimentary and volcanic rocks were affected by the structure forming process, either meteorite impact or endogenic explosion, or as some VS workers propose, by high strain tectonics. Besides these general features there are some geological and geophysical characteristics that are strikingly similar in both structures. There are, however, some obvious differences. Directly related to the structure forming processes are breccias in the footwall rocks of both structures. Pseudotachylite breccias occurring in both structures display great similarities. Chemical and physical characteristics of the pseudotachylites are similar in both structures. Both structures are characterized by overturned collar rocks, not evident everywhere around the SS. The VS is rimmed by an up or overturned collar of sediments and volcanics of the Witwatersrand, Ventersdorp and Transvaal Supergroups. Drilling information proved that the strata of the Witwatersrand Supergroup in the south of the VS are lying horizontally. Shockmetamorphic features such as planar microdeformations in rock forming minerals and shatter cones are present in both structures in the footwall rocks and in the SS also in the breccias of the OF. Both structures have large geophysical anomalies associated with them. In both structures the anomalies were interpreted as being caused by mafic-ultramafic complexes underlying the structures

    Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides

    Get PDF
    The primary electron transfer (ET) in reaction centers (RC) of Rhodobacter sphaeroides is investigated as a function of temperature with femtosecond time resolution. For temperatures from 300 to 25 K the ET to the bacteriopheophytin is characterized by a biphasic time dependence. The two time constants of τ1=3.5±0.4 ps and τ2=1.2±0.3 ps at T=300 K decrease continously with temperature to values of τ1=1.4±0.3 ps and τ2=0.3±0.15 ps at 25 K. The experimental results indicate that the ET is not thermally activated and that the same ET mechanisms are active at room and low temperatures. All observations are readily rationalized by a two-step ET model with the monomeric bacteriochlorophyll as a real electron carrier

    Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus

    Get PDF
    The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6–10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in isolated reaction centers are not modified by the isolation procedure

    Breaking conjugate pairing in thermostatted billiards by magnetic field

    Full text link
    We demonstrate that in the thermostatted three-dimensional Lorentz gas the symmetry of the Lyapunov spectrum can be broken by adding to the system an external magnetic field not perpendicular to the electric field. For perpendicular field vectors, there is a Hamiltonian reformulation of the dynamics and the conjugate pairing rule still holds. This indicates that symmetric Lyapunov spectra has nothing to do with time reversal symmetry or reversibility; instead, it seems to be related to the existence of a Hamiltonian connection.Comment: 4 pages, 3 figure

    On the Origins of Starburst and Post-Starburst Galaxies in Nearby Clusters

    Full text link
    HST WFPC2 images in B (F450W) and I (F814W) have been obtained for three starburst (SB) and two post-starburst (PSB) galaxies in the Coma cluster, and for three such galaxies in the cluster DC2048-52. V (F555W) and I images for an additional PSB galaxy in Coma have been extracted from the archive. Seven of these galaxies were previously classified as E/S0 on the basis of ground-based images, one as Sa, and the other as an irregular. The HST images reveal these SB/PSB galaxies to be heterogeneous in morphology. Nevertheless a common theme is that many of them, especially the SB galaxies, tend to have centralized spiral structure that appears simply as a bright ``bulge''on ground-based images. In addition, while some PSB galaxies exhibit distinct spiral structure, on the whole they have smoother morphologies than the SB galaxies. The morphologies and luminosity profiles are generally consistent with substantial starbursts in the form of centralized spiral structure (the SB galaxies) which fade into smoother morphologies (the PSB galaxies), with lingering spectroscopic evidence for past central starbursts. An important point is that the PSB galaxies retain disks, i.e, they have not evolved into spheroidal systems.Comment: 32 pages, 10 figures including 3 jpg images. To appear in the January 1999 Astronomical Journa

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
    corecore